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MOTION OF A PULSATING RIGID BODY

IN AN OSCILLATING VISCOUS FLUID

UDC 532.516; 532.582V. L. Sennitskii

The motion of a rigid sphere in a viscous fluid due to specified pulsations of the sphere and
specified oscillations of the fluid away from the sphere is considered.

The experimental results of [1] demonstrated the existence of predominantly unidirectional motion of a
compressible rigid body in an oscillating fluid. The essence of this phenomenon is as follows. A compressible
rigid body placed in a fluid in a closed container moves in a specified direction as a result of prescribed
oscillations and deformations of the container. (Depending on the character of oscillations and deformations
of the container, the body moves in the positive or negative direction of the axis along which the container
oscillates.) Predominantly unidirectional motion of a compressible rigid body in an oscillating fluid is similar
to predominantly unidirectional motion of a gas bubble in an oscillating fluid [2–4] and can be explained
similarly [1–3]. However, in contrast with the motion of a gas bubble, which has been studied theoretically
[2, 4], there have not been corresponding theoretical studies of the motion of a compressible rigid body. In
the present paper, we consider the motion of a rigid sphere in a viscous fluid under conditions similar to the
experimental conditions of [1].

1. A compressible rigid sphere is placed in an unbounded viscous incompressible fluid. The sphere
radius and the fluid velocity at infinity relative to the inertial Cartesian coordinate system X, Y , Z change
periodically with time t in a prescribed manner with period T (the average fluid velocity at infinity is zero).
The distribution of the material of the sphere is symmetric about its center (the center of inertia coincides
with the center of the sphere). The fluid flow is independent of the initial conditions. The position of the
sphere is characterized by the radius-vector S of its center. The problem is to find S as a function of t.

This formulation of the problem corresponds to the following: a closed container is filled with a fluid and
contains a body (a compressible rigid sphere), the walls of the container are at very large distances from the
body, some of the walls are deformable, the container performs specified translatory oscillations and deforms
in a specified manner, the deformations of the container cause the body to pulsate in a prescribed manner
(the body volume changes periodically with time), and on the body surface, the fluid pressure variations due
to the oscillations of the container are small compared to the fluid pressure variations due to the deformations
of the container.

We consider the fluid flow and the motion of the body relative to the Cartesian coordinate system
X1 = X − SX , X2 = Y − SY , X3 = Z − SZ (SX , SY , and SZ are, respectively, the X, Y , and Z components
of the vector S).
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We assume that τ = t/T , A = A0(1 + æa) is the radius of the sphere
[
(A0 (A0 > 0) is a con-

stant, æ (æ < 1) is the maximum value of |A − A0|/A0, and a = Real
∞∑
m=1

ame2mπiτ (am are constants)
]
,

U = Ûu = Ûuk is the fluid velocity at infinity
[
Û is the maximum value of |U |, u = Real

∞∑
m=1

ume2mπiτ

(um are constants), and k = (0, 0, 1)
]
, x1 = X1/A0, x2 = X2/A0, and x3 = X3/A0, r =

√
x2

1 + x2
2 + x2

3,

ε = ÛT/A0, ρ is the density of the fluid, m is the mass of the sphere, µ = 3m/(4πA3
0ρ), (s) is the surface of

the sphere [the equation of (s) is given by r = 1 + æa], n is the unit outward normal to (s), V is the fluid
velocity, v = TV /A0, P is the fluid pressure, p = T 2P/(ρA2

0), w = (1/A0) dS/dτ , ν is the kinematic viscosity
of the fluid, Re = A2

0/(νT ) is the Reynolds number, P is the stress tensor for the fluid, ℘ = T 2P/(ρA2
0), F is

the force exerted by the fluid on the body, and f = T 2F /(ρA4
0) =

∫∫
(s)

℘ · n ds.

The equation of motion for the center of inertia of the body, the Navier–Stokes and continuity equations,
and the conditions that must be satisfied at (s) and for r →∞ are written as

f − 4π
3
µ
dw

dτ
= 0,

∂v

∂τ
+ (v · ∇)v = −∇p+

1
Re

∆v − dw

dτ
, ∇ · v = 0; (1.1)

v = æ
da

dτ
n on (s), v ∼ εu−w as r →∞. (1.2)

2. We consider problem (1.1), (1.2) for small (compared to unity) values of ε.
We assume that as ε→ 0,

v ∼ v(0) + εv(1), p ∼ p(0) + εp(1), w ∼ w(0) + εw(1). (2.1)

According to (1.1), (1.2), and (2.1), in the Mth (M = 0, 1) approximation, we have

f (M) − 4π
3
µ
dw(M)

dτ
= 0,

∂v(M)

∂τ
+ (v(0) · ∇)v(M) +M(v(1) · ∇)v(0) +∇p(M) − 1

Re
∆v(M) +

dw(M)

dτ
= 0, (2.2)

∇ · v(M) = 0;

v(M) = (1−M)æ
da

dτ
n for r = 1 + æa, v(M) ∼Mu−w(M) as r →∞, (2.3)

where f (M) =
∫∫
(s)

℘(M) · n ds [℘(M) is ℘ taken at v = v(M) and p = p(M)].

Let M = 0. For ε = 0, the center of inertia of the sphere is at rest relative to the coordinate system
X, Y , Z, and the fluid flow is symmetric about the origin of the coordinates x1, x2, x3. Problem (2.2) and
(2.3) has the solution

v(0) = (1 + æa)2æ
da

dτ

r

r3
; (2.4)

p(0) =
(1 + æa)2

r

{
æ
d2a

dτ2
+

2æ2

1 + æa

(da
dτ

)2[
1− (1 + æa)3

4r3

]}
+ c(0);

w(0) = 0. (2.5)

Here r = (x1, x2, x3) and c(0) is a function of τ .
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Let M = 1. We consider problem (2.2) and (2.3) for small (compared to unity) values of æ (values of
ε are small in comparison to æ).

From (2.4), it follows that for æ→ 0 we have

v(0) ∼ æv
(0)
(1), (2.6)

where v(0)
(1) =

da

dτ

r

r3
.

We assume that for æ→ 0,

v(1) ∼ v(1)
(0) + æv

(1)
(1), p(1) ∼ p(1)

(0) + æp
(1)
(1), w(1) ∼ w(1)

(0) + æw
(1)
(1). (2.7)

According to (2.2), (2.3), (2.6), and (2.7), in the Nth (N = 0, 1) approximation, we have

f
(1)
(N) −

4π
3
µ
dw

(1)
(N)

dτ
= 0,

∂v
(1)
(N)

∂τ
+∇p(1)

(N) −
1

Re
∆v(1)

(N) +
dw

(1)
(N)

dτ
= −N

[
(v(0)

(1) · ∇)v(1)
(0) + (v(1)

(0) · ∇)v(0)
(1)

]
, (2.8)

∇ · v(1)
(N) = 0;

v
(1)
(N) = −N

∂v
(1)
(0)

∂r
a for r = 1, v

(1)
(N) ∼ (1−N)u−w(1)

(N) as r →∞, (2.9)

where f (1)
(N) =

∫∫
(s)

℘
(1)
(N) · n ds [℘(1)

(N) is ℘ for v = v
(1)
(N), p = p

(1)
(N)].

Let N = 0. Problem (2.8), (2.9) has the solution

v
(1)
(0)r =

1
r2 sin θ

∂ψ(0)

∂θ
, v

(1)
(0)θ = − 1

r sin θ

∂ψ(0)

∂r
, v

(1)
(0)ϕ = 0;

p
(1)
(0) =

{[
− ∂2

∂τ ∂r
+

1
Re

( ∂3

∂r3
− 2
r2

∂

∂r
+

4
r3

)]
ψ(0) −

dw(0)

dτ
r sin2 θ

} cos θ
sin2 θ

+ c(0);

w
(1)
(0) = w(0)k. (2.10)

Here v(1)
(0)r, v

(1)
(0)θ, and v

(1)
(0)ϕ are, respectively, the r, θ, and ϕ components of the vector v(1)

(0) [θ is the angle
between the vectors (0, 0, 1) and (x1, x2, x3), and ϕ is the angle between the vectors (1, 0, 0) and (x1, x2, 0)],

ψ(0) =
{

1
2

(u− w(0))r
2 +

1
2

Real
∞∑
m=1

w(0)m − um
q2
m

×
[q2

m + 3qm + 3
r

− 3
(
qm +

1
r

)
eqm(1−r)

]
e2mπiτ

}
sin2 θ,

c(0) is a function of τ , and w(0) = Real
∞∑
m=1

w(0)me2mπiτ , where w(0)m = 3
q2
m + 3qm + 3

(2µ+ 1)q2
m + 9qm + 9

um and

qm = (1 + i)
√
mπRe.

Let N = 1. Problem (2.8), (2.9) has the solution

v
(1)
(1)r =

1
r2 sin θ

∂ψ̄(1)

∂θ
+ ṽr, v

(1)
(1)θ = − 1

r sin θ

∂ψ̄(1)

∂r
+ ṽθ, v

(1)
(1)ϕ = 0;

p
(1)
(1) =

[
1

Re

( ∂3

∂r3
− 2
r2

∂

∂r
+

4
r3

)
ψ̄(1) −

1
r2

1∫
0

∂2ψ(0)

∂r2

da

dτ
dτ

]
cos θ
sin2 θ

+ p̃+ c(1);

w
(1)
(1) = (w̄(1) + w̃(1))k. (2.11)

Here v(1)
(1)r, v

(1)
(1)θ, and v

(1)
(1)ϕ are, respectively, the r, θ, and ϕ components of the vector v(1)

(1);

ψ̄(1) =
(
− 1

2
w̄(1)r

2 +
α

r
+ βr + Φ

)
sin2 θ,
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where

α = −1
4
w̄(1) +

1
2

(λ− 2η + ξ)
∣∣∣
r=1

, β =
3
4
w̄(1) −

1
2

(λ+ 3ξ)
∣∣∣
r=1

, Φ =
η

r
+ r2ξ,

λ =
1

sin2 θ

1∫
0

∂2ψ(0)

∂r2
a dτ, η =

r∫
∞

rσ dr, ξ =

∞∫
r

σ

r2
dr, σ =

1
9

Re
(
r3

∞∫
r

ω dr +

r∫
∞

r3ω dr

)
,

ω =
1

r3 sin2 θ

1∫
0

(∂3ψ(0)

∂r3
− 2
r

∂2ψ(0)

∂r2
− 2
r2

∂ψ(0)

∂r
+

8
r3
ψ(0)

)da
dτ

dτ ;

ṽr = Real
∞∑
m=1

vrme2mπiτ , ṽθ = Real
∞∑
m=1

vθme2mπiτ , p̃ = Real
∞∑
m=1

pme2mπiτ ,

where vrm, vθm, and pm are functions of r and θ; c(1) is a function of τ ;

w̄(1) =
1
3

Real
∞∑
m=1

a∗mumq
2
m

×
[
1 +

1− µ
16

(
q5
m− q4

m + 14q3
m− 18q2

m + 48qm + 48− q4
m(q2

m + 12)eqm
∞∫

1

e−qmr

r
dr

)/
((2µ+ 1)q2

m + 9qm + 9)
]
,

where a∗m are constants, complex conjugate to am; w̃(1) = Real
∞∑
m=1

w(1)me2mπiτ , where w(1)m are constants.

3. Using (2.10) and (2.11), we obtain

S = W̄ tk + S̃, (3.1)

where

W̄ =
A0

T
εæw̄(1) (3.2)

and S̃ = S0+Real
∞∑
m=1

Sme2mπiτk (S0 and Sm are constants). Relation (3.1) gives an approximate dependence

of S on t.
According to (3.1), the sphere moves along the Z axis, and its motion consists of oscillations and

translational motion with constant velocity in the direction k (for W̄ > 0) or −k (for W̄ < 0). This means
that the motion of the body in a specified direction is possible because of the pulsations of the rigid body
and the oscillations of the fluid away from the body.

4. The conditions of the problem considered in the present paper are similar to those realized in the
experiment of [1]. In both theory and experiment, similar oscillatory actions on a system consisting of a fluid
and a rigid body result in motion of the body in the positive or negative direction of the axis along which the
fluid oscillates away from the body. Because of this, the formulation of the problem and the results reported
in the present paper can serve as a basis for a mathematical model of the phenomenon of predominantly
unidirectional motion of a compressible rigid body in an oscillating fluid.

5. Let a1 6= 0, u1 6= 0, an = 0, and un = 0 (n = 2, 3, . . .). Using (3.2), we obtain
W̄T

εæA0
∼ −2π

9
Re (µ+ 2)Imag (a∗1u1) +

π2

162
Re2 (µ− 1)(16µ+ 35) Real (a∗1u1) as Re→ 0; (5.1)

W̄T

εæA0
∼ −2π

3
Re Imag (a∗1u1) + 5

µ− 1
2µ+ 1

Real (a∗1u1) as Re→∞. (5.2)

In particular, from (5.1) and (5.2), it follows that if Imag (a∗1u1) = 0, the directions of motion of the sphere
are opposite for µ < 1 and µ > 1 and there is no motion for µ = 1.

Thus, for the same pulsations of the body and oscillations of the fluid away from the body, the behavior
of the body can be qualitatively different, depending on the ratio of its average density to the density of the
fluid.
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